Training HMM structure with genetic algorithm for biological sequence analysis
نویسندگان
چکیده
SUMMARY Hidden Markov models (HMMs) are widely used for biological sequence analysis because of their ability to incorporate biological information in their structure. An automatic means of optimizing the structure of HMMs would be highly desirable. However, this raises two important issues; first, the new HMMs should be biologically interpretable, and second, we need to control the complexity of the HMM so that it has good generalization performance on unseen sequences. In this paper, we explore the possibility of using a genetic algorithm (GA) for optimizing the HMM structure. GAs are sufficiently flexible to allow incorporation of other techniques such as Baum-Welch training within their evolutionary cycle. Furthermore, operators that alter the structure of HMMs can be designed to favour interpretable and simple structures. In this paper, a training strategy using GAs is proposed, and it is tested on finding HMM structures for the promoter and coding region of the bacterium Campylobacter jejuni. The proposed GA for hidden Markov models (GA-HMM) allows, HMMs with different numbers of states to evolve. To prevent over-fitting, a separate dataset is used for comparing the performance of the HMMs to that used for the Baum-Welch training. The GA-HMM was capable of finding an HMM comparable to a hand-coded HMM designed for the same task, which has been published previously.
منابع مشابه
The Block Hidden Markov Model for Biological Sequence Analysis
The Hidden Markov Models (HMMs) are widely used for biological sequence analysis because of their ability to incorporate biological information in their structure. An automatic means of optimising the structure of HMMs would be highly desirable. To maintain biologically interpretable blocks inside the HMM, we used a Genetic Algorithm (GA) that has HMM blocks in its coding representation. We dev...
متن کاملImproving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM
Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...
متن کاملA tool - box for hidden Markov models with two novel , memory efficient parameter training algorithms
Hidden Markov models (HMMs) are powerful statistical tools for biological sequence analysis. Many recently developed Bioinformatics applications employ variants of HMMs to analyze diverse types of biological data. It is typically fairly easy to design the states and the topological structure of an HMM. However, it can be difficult to estimate parameter values which yield a good prediction perfo...
متن کاملAn evolving method for learning HMM Structure: prediction of protein secondary structure
Background: The prediction of the secondary structure of proteins is one of the most studied problems in bioinformatics. Despite their success in many problems of biological sequence analysis, Hidden Markov Models (HMMs) have not been used much for this problem, as the complexity of the task makes manual design of HMMs difficult. Therefore, we have developed a method for evolving the structure ...
متن کاملA New Fast and Efficient HMM-Based Face Recognition System Using a 7-State HMM Along With SVD Coefficients
In this paper, a new Hidden Markov Model (HMM)-based face recognition system is proposed. As a novel point despite of five-state HMM used in pervious researches, we used 7-state HMM to cover more details. Indeed we add two new face regions, eyebrows and chin, to the model. As another novel point, we used a small number of quantized Singular Values Decomposition (SVD) coefficients as feature...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 20 18 شماره
صفحات -
تاریخ انتشار 2004